Home / Articles / Scientists capture first image of supermassive black hole in heart of Milky Way

Scientists capture first image of supermassive black hole in heart of Milky Way

On May 12th, astronomers with the Event Horizon Telescope collaboration unveiled an image of Sagittarius A*, the black hole at the center of the Milky Way galaxy. The world has been gifted the second photograph ever taken of a supermassive black hole — and this time, it’s a black hole that’s relatively close to home. Today, scientists collaborating on the massive Event Horizon Telescope (EHT) project

  • Posted on 12th May, 2022 13:25 PM
  • 1284 Views
Scientists capture first image of supermassive black hole in heart of Milky Way Image
p id="sVfK6o">The world has been gifted the second photograph ever taken of a supermassive black hole — and this time, it’s a black hole that’s relatively close to home. Today, scientists collaborating on the massive Event Horizon Telescope (EHT) project released an image of Sagittarius A*, the gargantuan black hole spinning away at the center of our own galaxy, the Milky Way.

This celestial present comes from the same project which made quite the splash back in 2019 when they released the very first image taken of a black hole. That now iconic fuzzy orange photo showcased a supermassive black hole at the heart of a mammoth galaxy called Messier 87, or M87, which is located 55 million light-years from Earth. The groundbreaking result helped scientists verify the circular shape of these objects as well as further confirm Albert Einstein’s theory of general relativity, which predicted the existence of black holes.

Now, the team is back with another photo of a black hole, this one right in our own backyard. Located roughly 26,000 light-years from Earth, Sagittarius A*, or Sgr A*, is thought to be roughly 4 million times the mass of our Sun. Scientists have inferred its existence at the center of our galaxy for decades based on how objects move around the black hole. But this is the first time we have a direct image of its shadow, even more proof of life of the nexus of our cosmic neighborhood.

With each new supermassive black hole picture we get, scientists learn a little bit more about these enigmatic objects. “These supermassive black holes, we don’t really know how they formed or grew so large,” Meredith Clark Powell, a black hole researcher at Stanford University, tells The Verge. “So it’s a very active area of research.”

Truthfully, one cannot capture an image of a black hole directly. Black holes, by their very nature, can’t be “seen,” as these objects are so massive that nothing can escape their gravitational pull — including light. Instead, we can capture the silhouette of a black hole. If a supermassive black hole is surrounded by a swirling disc of gas and dust, that material will glow bright since the gas and dust is sped up and heated by the powerful gravitational pull of the nearby hole. What EHT is actually capturing is the black hole’s shadow against the backdrop of that glowing gas and dust.

Snapping pictures of these black hole shadows is no simple task, though. To capture an image like this of Sagittarius A*, a single telescope would have to be the size of planet Earth to get the job done, according to the Event Horizon Telescope group. Since building such an apparatus isn’t exactly realistic, scientists came up with a workaround. The EHT is a wide-ranging array of radio dishes spread out across five different continents. The radio telescopes all work together to observe the same object, behaving as if they are one giant planet-sized telescope. It’s then up to the EHT scientists to piece together the data the telescopes gathered to create a single image.

EHT used the same technique to capture M87; eight EHT radio dishes spent a week observing that black hole in April 2017, which then resulted in months and months of work to compile the data into the image that was eventually released. At the same time, EHT also observed Sagittarius A*, but crafting its image proved to be much more challenging and time-consuming.

Though it’s closer to Earth than M87’s black hole, Sgr A* is smaller and less active, and the material surrounding the object is much dimmer, making it harder to observe. On top of that, the material that does surround Sgr A* exhibits weird flaring when the particles surrounding the black hole are accelerated to much higher energies. While it makes for an interesting light show, it changes the composition of the black hole every few hours, making it tricky to observe over time.

In addition to all of that, Sgr A* is in our own galaxy, which makes it harder to see from Earth. Observing this black hole means peering through the galactic plane of the Milky Way — and all of the gaseous material in between us and the black hole. That provides a lot of interference that the scientists had to work around.

Developing...

Scientists capture first image of supermassive black hole in heart of Milky Way View Story